If \(c\) is proportional to the square of \(d\), and \(c=15\) when \(d=3\):

Find \(d\) when \(c=20\) \begin{align}c & \propto d^2\\ So \quad c & =kd^2 \\ By \; substitution \quad 15 & =k(3^2)\\ k & =\frac{15}{9}\\ \therefore \quad c & =\frac{15}{9}(d^2)\\ And \; when \; c & =20\\ 20 & =\frac{15}{9}(d^2)\\ d^2 & =\frac{9}{15}(20)\\ d^2 & =12\\ \therefore \quad d & = \pm \sqrt{12} \end{align}

Find \(c\) when \(d=8\) \begin{align}c & \propto d^2\\ So \quad c & =kd^2 \\ By \; substitution \quad 15 & =k(3^2)\\ k & =\frac{15}{9}\\ And \; when \; d & =8\\ c & =\frac{3}{8}(8^2)\\ \therefore \quad c & =24\\ \end{align}