If \(p\) is inversely proportional to \(q\), and \(p=4\) when \(q=7\):

Find \(p\) when \(q=9\) \begin{align}p & \propto \frac{1}{q}\\ So \quad p & =k (\frac{1}{q}) \\ By \; substitution \quad 4 & =k(\frac{1}{7})\\ k & =28\\ \therefore \quad p & = 28(\frac{1}{q})\\ And \; when \; q & =9\\ p & = 28(\frac{1}{9})\\ \therefore \quad p & =\frac{28}{9} \end{align}

Find \(q\) when \(p=3\) \begin{align}p & \propto \frac{1}{q}\\ So \quad p & =k (\frac{1}{q}) \\ By \; substitution \quad 4 & =k(\frac{1}{7})\\ k & =28\\ \therefore \quad p & = 28(\frac{1}{q})\\ And \; when \; p & =3\\ 3 & = 28(\frac{1}{q})\\ \therefore \quad q & =\frac{28}{3} \end{align}