Complete the square by rewriting the expression in the form   \((x+a)^2+b \)

1)\(x^2+8x+14\)
\((x+4)^2-2\)
2)\(x^2+16x+16\)
\((x+8)^2-48\)
3)\(x^2-4x-3\)
\((x-2)^2-7\)
4)\(x^2-2x\)
\((x-1)^2-1\)
5)\(x^2-7x-5\)
\(\left(x- \frac{7}{2} \right)^2-17\frac{1}{4}\)
6)\(x^2-\sqrt{3}x+2\)
\( \left(x-\frac{\sqrt{3}}{2} \right)^2 +1 \frac{1}{4}\)
7)\(-x^2-4x-6\)
\(-(x+2)^2-2\)
8)\(9- \sqrt{5}x-x^2\)
\(- \left(x+ \frac{\sqrt5}{2} \right)^2+15 \frac{1}{4}\)