Cosine Rule (proof)
\begin{align} By\ trig\ ratios \quad x & = b\ cosA \\
\\
then\ by\ Pythagoras\ on\ & \triangle CDA \\
b^2 & = h^2+(b\ cosA)^2 \\
\implies\ h^2 & =b^2-(b\ cosA)^2 \\
\\
Also\ by\ Pythagoras\ & on\ \triangle CBD \\
a^2-(c- b\ cosA)^2 & = h^2 \\
\\
\therefore\ a^2-(c- b\ cosA)^2 & = b^2-(b\ cosA)^2 \\
\\
\implies\ a^2 = b^2+c^2- & 2bc\ cosA \\
\end{align}