Solve \( cos \theta= \frac{1}{2} \) in the interval \( 0 ^{\circ} \leqslant \theta \leqslant 360 ^{\circ}\)

\begin{align} cos^{-1} \left( \frac{1}{2} \right) & = \theta \\ \\ Principal\ value & = 60 ^{\circ} \quad (by\ calculator) \\ \\ 360^{\circ}-60^{\circ} & = 300^{\circ}\\ \\ Solutions\ & are \\ \theta & = 60 ^{\circ} \\ \theta & = 300^{\circ} \end{align}

Solve \( sin \theta= \frac{1}{2} \) in the interval \( 0 ^{\circ} \leqslant \theta \leqslant 180 ^{\circ}\)

\begin{align} sin^{-1} \left( \frac{1}{2} \right) & = \theta \\ \\ Principal\ value & = 30 ^{\circ} \quad (by\ calculator) \\ \\ 180^{\circ}-30^{\circ} & = 150^{\circ}\\ \\ Solutions\ & are \\ \theta & = 30 ^{\circ} \\ \theta & = 150^{\circ} \end{align}

Solve \( tan \theta= -1.5 \) in the interval \( 0 ^{\circ} \leqslant \theta \leqslant 360 ^{\circ}\)

(solutions to 2 d.p.)

\begin{align} tan^{-1} \left( -1.5 \right) & = \theta \\ \\ Principal\ value & = - 56.31^{\circ} (to\ 2\ d.p.) \\ \\ -56.31^{\circ}+180^{\circ} & = 123.69^{\circ}\\ \\ -56.31^{\circ}+2(180^{\circ}) & = 303.69^{\circ}\\ \\ Solutions\ in\ & the\ interval\ are \\ \theta & =123.61^{\circ} \\ \theta & = 303.69^{\circ} \end{align}

Solve \( sin \theta= \frac{\sqrt{3}}{4} \) in the interval \( 5 ^{\circ} \leqslant \theta \leqslant 95 ^{\circ}\)

(solutions to 2 d.p.)

\begin{align} sin^{-1} \left(\frac{\sqrt{3}}{4} \right) & = \theta \\ \\ Principal\ value & = 25.66^{\circ} (to\ 2\ d.p.) \\ \\ 180-25.66^{\circ} & = 154.34^{\circ}\\ \\ Solution\ in\ & the\ interval\ is \\ \theta & = 25.66^{\circ} \end{align}