Express in the form   \(\sqrt[n]{b^m} \)

1)\(3^{\frac{1}{2}}\)
\(\sqrt[2]{3^1}\)
2)\( 5^{\frac{1}{3}}\)
\(\sqrt[3]{5^1}\)
3)\(7^{\frac{2}{3}}\)
\( \sqrt[3]{7^2}\)
4)\( 11^{\frac{6}{7}}\)
\(\sqrt[7]{11^6}\)
5)\( 5^{\frac{3}{4}} \times\ 5^{\frac{3}{4}}\)
\(\sqrt[4]{5^6}\)
6)\(13^{\frac{5}{9}} \div \ 13^{\frac{1}{9}}\)
\(\sqrt[9]{13^4}\)
7)\( 8^{\frac{2}{3}} \times\ 16^{\frac{1}{3}}\)
\(2^{\frac{6}{3}}\ \times\ 2^{\frac{4}{3}}= \sqrt[3]{2^{10}}\)
8)\( (27^{\frac{2}{3}})^2 \div \ (9^{\frac{1}{3}})^5 \)
\(3^{\frac{12}{3}} \div 3^{\frac{10}{3}} = \sqrt[3]{3^2} \)