Divide   \( 5x^2-9x+3 \quad by \quad (x+1)\)


\(5x\) \(-14\)
\(x\) \(5x^2\) \(-14x\)
\(1\) \(5x\) \(-14\)
\begin{align} Quotient & = 5x-14 \\ Remainder & = 17 \\ \\ So \quad 5x^2 -9x+3 & = (5x-14)(x+1) +17 \end{align}


Divide   \( 4x^3+10x^2-3x -6 \quad by \quad (x-2)\)


\(4x^2\) \(18x\) \(33\)
\(x\) \(4x^3\) \(18x^2\) \(33x\)
\(-2\) \(-8x^2\) \(-36x\) \(-66\)
\begin{align} Quotient & = 4x^2+18x+33 \\ Remainder & = 60 \\ \\ So \quad 4x^3 +10x^2 -3x-6 & = (4x^2+18x+33)(x-2) +60 \end{align}


Divide   \( 6x^4+3x^3-4x^2+x +5 \quad by \quad (x^2-2x+1)\)


\(6x^2\) \(15x\) \(20\)
\(x^2\) \(6x^4\) \(15x^3\) \(20x^2\)
\(-2x\) \(-12x^3\) \(-30x^2\) \(-40x\)
\(1\) \(6x^2\) \(15x\) \(20\)
\begin{align} Quotient & = 6x^2+15x+20 \\ Remainder & = 26x-15 \\ \\ 6x^4+3x^3 -4x^2+x+5 & = (6x^2+15x+20)(x^2-2x+1) + 26x-15 \end{align}