(2) \(\frac{9x^2+12x-6}{(x-1)(x+2)(2x+3)} \)
\begin{align}
\frac{9x^2+12x-6}{(x-1)(x+2)(2x+3)} & = \frac{A}{x-1}+ \frac{B}{x+2}+\frac{C}{2x+3} \\
\\
\frac{9x^2+12x-6}{(x-1)(x+2)(2x+3)} & = \frac{A(x+2)(2x+3)}{(x-1)(x+2)(2x+3)}+ \frac{B(x-1)(2x+3)}{(x+2)(x-1)(2x+3)}+\frac{C(x-1)(x+2)}{(2x+3) (x-1)(x+2)} \\
\\
9x^2+12x-6 & = A(x+2)(2x+3) +B(x-1)(2x+3)+ C(x-1)(x+2) \\
\\
let\ x = 1\,, \quad then \quad 9(1^2)+12(1)-6 & = A(1+2)(2(1)+3)+B(1-1)(2(1)+3)+C(1-1)(1+2) \\
15 & = 15A \\
\implies\ A & = 1 \\
\\
let\ x =-2\,, \quad then \quad 9((-2)^2)+12(-2)-6 & =A(-2+2)(2(-2)+3)+B(-2-1)(2(-2)+3)+C(-2-1)(-2+2) \\
6 & = 3B \\
\implies B & = 2 \\
\\
Equating\ constants\,, \quad -6 & = 6A+3B-2C \\
-6 & = 6(1)+3(2)-2C \\
-6& = -2C \\
\implies\ C= 3\\
\\
\therefore \quad \frac{9x^2+12x-6}{(x-1)(x+2)(2x+3)} & = \frac{1}{x-1}+ \frac{2}{x+2}+\frac{3}{2x+3} \\
\\
\\
\end{align}