(2) \(\frac{x^2-6x+6}{x(x^2+3x-6)} \)
\begin{align}
\frac{x^2-6x+6}{x(x^2+3x-6)} & = \frac{A}{x} + \frac{Bx+C}{x^2+3x-6} \\
\\
\frac{x^2-6x+6}{x(x^2+3x-6)} & = \frac{A(x^2+3x-6)}{x(x^2+3x-6)} + \frac{(Bx+C)x}{x(x^2+3x-6)} \\
\\
x^2-6x+6 & = A(x^2+3x-6) + (Bx+C)x \\
\\
& = (A+B)x^2+(3A+C)x -6A \\
\\
Equating \ constants, \quad 6 & = -6A \\
\implies \quad A & =-1 \\
\\
Equating \ x^2 \ coefficients, \quad x^2 & = (-1+B)x^2 \\
\implies \quad B & =2 \\
\\
Equating \ x \ coefficients, \quad -6x & = (-3+C)x \\
\implies \quad C & =-3 \\
\\
\therefore \quad \frac{x^2-6x+6}{x(x^2+3x-6)} & = \frac{-1}{x} + \frac{2x-3}{x^2+3x-6} \\
\end{align}