(1) \( \frac{-3x^2+x-1}{(x+2)^2(x-3)} \)
\begin{align}
\frac{-3x^2+x-1}{(x+2)^2(x-3)} & = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-3} \\
\\
\frac{-3x^2+x-1}{(x+2)^2(x-3)} & = \frac{A(x+2)(x-3)}{(x+2)(x+2)(x-3)} + \frac{B(x-3)}{(x+2)^2(x-3)} + \frac{C(x+2)^2}{(x-3)(x+2)^2} \\
\\
-3x^2+x-1 & = A(x+2)(x-3) + B(x-3) + C(x+2)^2 \\
\\
let\ x = -2\,, \quad then \quad -3(-2)^2 -2 -1 & = A(-2+2)(-2-3)+B(-2-3)+C(-2+2)^2 \\
-15 & = -5B \\
\implies B & =3 \\
\\
let\ x =3\,, \quad then \quad -3(3)^2+3-1 & =A(3+2)+B(3-3) + C(3+2)^2 \\
-25& = 25C \\
\implies C & = -1 \\
\\
Equating\ constants\,, \quad -1 & = -6A -9-4 \\
12 & = -6A \\
\implies\ A & = -2 \\
\\
\therefore \quad \frac{-3x^2+x-1}{(x+2)^2(x-3)} & = \frac{-2}{x+2} + \frac{3}{(x+2)^2} + \frac{-1}{x-3}
\end{align}