Find the first four terms of the expansion of \(( 3+x)^{\frac{1}{2}} \) and state the range of validity.
\begin{align}
& ( 3+x)^{\frac{1}{2}} = \left[3^{\frac{1}{2}}\left(1+ \frac{1}{3}x \right)^{\frac{1}{2}} \right] \\
\\
3^{\frac{1}{2}} & \left( 1+ \left(\frac{1}{3} \right)x + \frac{(\frac{1}{2})\times (\frac{1}{2} - 1) }{2!}\left(\frac{1}{3}x \right)^2 + \frac{\frac{1}{2}\times \left(\frac{1}{2}-1 \right) \times \left(\frac{1}{2}-2 \right) }{3!} \left(\frac{1}{3}x \right)^3 +...\right)
\\
\\
= & \, \sqrt{3}+ \frac{\sqrt{3}}{3}x - \frac{\sqrt{3}}{72}x^2 + \frac{\sqrt{3}}{432}x^3 +...
\\
\\
Range\ & of\ validity\,, \quad|x|\lt3
\end{align}