Express \(cos^4 \theta\) in terms of \(cos\,n\theta\)
\begin{align}
& We\ know\ that\ for\ a\ complex\ number\ z \\
2cos\theta & = \left(z+\frac{1}{z}\right) \quad \quad \enclose{circle}{\color{black}{1}}\\
\therefore\ (2cos\theta)^4 & = \left(z+\frac{1}{z}\right)^4\quad \quad \enclose{circle}{\color{black}{2}} \\
Using\ the\ binomial\ & expansion\ of\ the\ RHS\ of\ equation\ \enclose{circle}{\color{black}{2}}\\
\left(z+\frac{1}{z} \right)^4 & = z^4 + 4z^3 \left(\frac{1}{z}\right) + 6z^2 \left(\frac{1}{z}\right)^2 + 4z\left(\frac{1}{z}\right)^3 + \left(\frac{1}{z}\right)^4 \\
& =z^4 + 4z^2 + 6z^0 + 4\left(\frac{1}{z^2}\right) + \left(\frac{1}{z^4}\right)\\
& = \left(z^4+ \frac{1}{z^4}\right) + 4\left(z^2+ \frac{1}{z^2}\right) + 6 \\
\\
& = 2cos4\theta + 8cos2\theta + 6 \quad \quad (by\ deMoivre's\ Theorem) \\
\\
Therefore,\ from\ equation\ \enclose{circle}{\color{black}{2}} \\
\\
2^4cos^4\theta & = 2cos4\theta + 8cos2\theta + 6 \\
cos^4 \theta & = \frac{1}{16}\left(2cos4\theta + 8cos2\theta + 6 \right) \\
& = \frac{1}{8}\left(cos4\theta + 4cos2\theta + 3\right)
\end{align}