Show that for a complex number z
\begin{align}
\left(z+ \frac{1}{z}\right)=2cos\theta
\end{align}
\begin{align}
We\ know\ that \quad
z & = (cos \theta + isin \theta) \\
and\ that \quad
\frac{1}{z} & = (cos \theta + isin \theta)^{-1} \\
Also,\ by\ deMoivre's\ Theorem \\
(cos \theta + isin \theta)^{-1} & =(cos (-\theta) + isin( -\theta))\\
\\
Therefore \\
(z+ \frac{1}{z})& = (cos \theta + isin \theta) + (cos (-\theta) + isin( -\theta))\\
And\ because \quad cos(- \theta)& = cos (\theta)\quad and\quad sin(-\theta)= - sin(\theta)) \\
(z+ \frac{1}{z}) & = (cos \theta + isin \theta) + (cos (\theta) - isin(\theta)) \quad \\
& = 2cos\theta
\end{align}
Show that for a complex number z
\begin{align}
\left(z-\frac{1}{z} \right)=2isin\theta
\end{align}
\begin{align}
We\ know\ that \quad
z & = (cos \theta + isin \theta) \\
and\ that \quad
\frac{1}{z} & = (cos \theta + isin \theta)^{-1} \\
Also,\ by\ deMoivre's\ Theorem \\
(cos \theta + isin \theta)^{-1} & =(cos (-\theta) + isin( -\theta))\\
\\
Therefore \\
(z- \frac{1}{z})& = (cos \theta + isin \theta) - (cos (-\theta) + isin( -\theta))\\
And\ because \quad cos(- \theta)& = cos (\theta)\quad and\quad sin(-\theta)= - sin(\theta)) \\
(z- \frac{1}{z}) & = (cos \theta + isin \theta) - (cos (\theta) - isin(\theta)) \quad \\
& = 2isin\theta
\end{align}