Separation of Variables
\begin{align}
If\quad \frac{dy}{dx} & = f(x)g(x) \\
\\
Then \quad \int \frac{1}{g(y)}dy & = \int f(x)dx\\
\\
\\
\end{align}
Example
Find the general solution of the differential equation
\( \frac{dy}{dx} = xy^2 \)
\begin{align}
\frac{dy}{dx} & = xy^2 \\
\int \frac{1}{y^2} \frac{dy}{dx} \, dx & = \int x \, dx \\
\int \frac{1}{y^2} \, dy & = \int x \, dx \\
-\frac{1}{y} + d & = \frac{1}{2}x^2 + e \quad (where\ d\ and\ e\ are\ constants\ of\ integration) \\
-\frac{1}{y} & = \frac{x^2}{2} + c \quad (where\ c\ = e-d)\\
y & = - \frac{2}{x^2}+k \\
\end{align}
Find the particular solution if \(y = 5\) when \( x = 2 \)
\begin{align}
Substituting\ y & =5 \ and\ x=2 \ into\ the\ general\ solution \\
5 & = -\frac{2}{2^2}+k \\
5 & = - \frac{1}{2}+k \\
\implies k & = 5\frac{1}{2} \\
\therefore \ y & = -\frac{2}{x^2}+5\frac{1}{2}
\end{align}