Solve the simultaneous equations
\[
\begin{align}
\frac{dx}{dt} & = 3x+5y \quad \quad \enclose{circle}{\color{black}{1}}\\
\frac{dy}{dt} & = x-y \quad \quad \enclose{circle}{\color{black}{2}}
\end{align}
\]
given that the initial conditions are \( x=7 \) and \( y= -1\) , where \(t=0\)
\[
\begin{align}
& Rearranging \quad \enclose{circle}{\color{black}{2}} \quad gives \\
x & = \frac{dy}{dt}+y \quad \quad \quad \quad \enclose{circle}{\color{black}{3}}\\
& Then\ differentiating\ \quad \enclose{circle}{\color{black}{3}} \quad with\, respect\, to \quad t \quad gives\\
\frac{dx}{dt} & = \frac{d^2y}{dt^2}+ \frac{dy}{dt} \quad \quad \quad \quad \enclose{circle}{\color{black}{4}} \\
& Substituting \quad \enclose{circle}{\color{black}{3}} \quad and \quad \enclose{circle}{\color{black}{4}} \quad into \quad \enclose{circle}{\color{black}{1}} \quad gives \\
\frac{d^2y}{dt^2}+\frac{dy}{dt} & = 3( \frac{dy}{dt}+y) + 5y \\
0 & =\frac{d^2y}{dt}-2\frac{dy}{dt}-8y \\
\\
& Which\ yields\ the\ auxiliary\ equation \\
0 & = \lambda^2 - 2 \lambda - 8 \\
0 & = ( \lambda-4)( \lambda +2) \\
\lambda & = 4 \quad or \quad \lambda= -2 \\
\\
& So\ the\ general\ solution\ for\ y\ is \\
y & = Ae^{4t} + Be^{-2t} \\
& and\ subsituting\ into \quad \enclose{circle}{\color{black}{3}} \quad gives\ the\ general\ solution\ for\ x \\
x & = \frac{dy}{dt}+y \\
& = (4Ae^{4t}-2Be^{-2t})+(Ae^{4t}+Be^{-2t}) \\
& = 5Ae^{4t} - Be^{-2t} \\
\\
& When\ t=0 \,, x=7 \implies 7= 5A - B \\
& When\ t=0 \,, y=-1 \implies -1= A + B \\
\\
& \therefore \quad A = 1 \quad and \quad B = -2 \\
\\
& So\ the\ particular\ solution\ is \\
x & = 5e^{4t}+2e^{-2t} \\
y & = e^{4t}-2e^{-2t} \\
\end{align}
\]