\(\frac{d}{dx}\ arcsin(x)\)
\begin{align}Let \, y & = arcsin(x)\\
then \quad x & = sin(y) \quad \enclose{circle}{\color{black}{1}}\\
And \quad \frac{dx}{dy} & = cos(y) \\
Inverting \quad \frac{dy}{dx} & = \frac{1}{cos(y)} \\
& = \frac{1}{\sqrt{1-sin^2(y)}} \\
Substituting \, from \, \enclose{circle}{\color{black}{1}}\\
& = \frac{1}{\sqrt{1-x^2}}
\end{align}
\( \frac{d}{dx}\ arccos(x)\)
\begin{align}Let \, y & = arccos(x)\\
then \quad x & = cos(y) \quad \enclose{circle}{\color{black}{1}}\\
And \quad \frac{dx}{dy} & = -sin(y) \\
Inverting \quad \frac{dy}{dx} & = -\frac{1}{sin(y)} \\
& = -\frac{1}{\sqrt{1-cos^2(y)}} \\
Substituting \, from \, \enclose{circle}{\color{black}{1}}\\
& = -\frac{1}{\sqrt{1-x^2}}
\end{align}
\(\frac{d}{dx}\ arctan(x) \)
\begin{align}Let \, y & = arctan(x)\\
then \quad x & = tan(y) \quad \enclose{circle}{\color{black}{1}}\\
And \quad \frac{dx}{dy} & = sec^2(y) \\
Inverting \quad \frac{dy}{dx} & = \frac{1}{sec^2(y)} \\
& = \frac{1}{1+tan^2(y)} \\
Substituting \, from \, \enclose{circle}{\color{black}{1}}\\
& = \frac{1}{1+x^2}
\end{align}