\( arctan\left(\frac{(1-x)}{(1+x)}\right) \) Method 2: Implicit differentiation
\begin{align}Let \quad y & = arctan\left( \frac{1-x}{1+x} \right)\\
tan(y) & = \left( \frac{1-x}{1+x} \right) \quad \enclose{circle}{\color{black}{1}} \\
Differentiating \, implicitly & \, with \, respect \, to \, x \\
sec^2(y) \frac{dy}{dx} & = \frac{-1(1+x)-(1-x)(1)}{(1+x)^2} \\
Using \quad 1+ tan^2(y) & = sec^2(y) \\ and \, substituting \, from \, \enclose{circle}{\color{black}{1}} \\
\left(1+ \left( \frac{1-x}{1+x} \right)^2\right)\frac{dy}{dx} & = \frac{-1(1+x)-(1-x)(1)}{(1+x)^2} \\
\left( \frac{(1+x)^2+(1-x)^2}{(1+x)^2} \right)\frac{dy}{dx} & = \frac{-1(1+x)-(1-x)(1)}{(1+x)^2} \\
\left( \frac{(1+x)^2+(1-x)^2}{(1+x)^2} \right)\frac{dy}{dx} & = -\frac{2}{(1+x)^2}\\
\frac{dy}{dx} & = -\frac{2}{(1+x)^2+(1-x)^2}\\
& = -\frac{2}{1+2x+x^2+1-2x+x^2}\\
& = - \frac{2}{2x^2+2} \\
& = - \frac{1}{x^2+1}
\end{align}