Example 2: Trigonometric Function
Given that \(y=e^{3x}cos^2(5x) \,, \quad find \quad \frac{dy}{dx}\)
\begin{align}
Let \quad u & = e^{3x} \quad and \quad v= cos^2(5x) \\
then \quad \frac{du}{dx} & = 3e^{3x} \\
and \quad \frac{dv}{dx} & = 2cos(5x) \times 5(-sin(5x)) \\
& = -10cos(5x)sin(5x) \\
Using \, the \, & product \, rule, \\
\frac{dy}{dx} & = u\frac{dv}{dx} + v\frac{du}{dx} \\
& = e^{3x}(-10cos(5x)sin(5x)) + cos^2(5x)3e^{3x}\\
& = e^{3x}(-10cos(5x)sin(5x)+3cos^2(5x)) \\
Using \, the \, & double \, angle \, formula, \\
& = e^{3x}(-5sin(10x)+3cos^2(5x)) \\
\end{align}