The Product Rule

Ify=uvthendydx=udvdx+vdudx

Example 1: Polynomial Function

Given that y=x35x2,finddydx

Letu=x3andv=5x2=(5x2)12thendudx=3x2anddvdx=12(5)(5x2)12Usingtheproductrule,dydx=udvdx+vdudx=x3(52(5x2)12)+(5x2)12(3x2)=52x3+(5x2)(3x2)(5x2)12

Example 2: Trigonometric Function

Given that y=e3xcos2(5x),finddydx

Letu=e3xandv=cos2(5x)thendudx=3e3xanddvdx=2cos(5x)×5(sin(5x))=10cos(5x)sin(5x)Usingtheproductrule,dydx=udvdx+vdudx=e3x(10cos(5x)sin(5x))+cos2(5x)3e3x=e3x(10cos(5x)sin(5x)+3cos2(5x))Usingthedoubleangleformula,=e3x(5sin(10x)+3cos2(5x))