Given that \( x>0, y>0, \) show that \( \log_a (\frac{x}{y}) = \log_{a} x - \log_{a} y \) .
\begin{align}
Let \ \log_{a} x & = p \ and \ \log_{a} y = q \quad \quad \enclose{circle}{\color{black}{1}}\\
\\
Rewrite \ as \ indices \\
\\
x & =a^p \ and \ y= a^q \\
\\
Then \ by \ the \ laws \ of \ indices \\
\\
\frac{x}{y} & = \frac{a^p}{a^q} \\
\\
\frac{x}{y} & = a^{p-q} \\
\\
Rewrite \ as \ logarithms \\
\\
\log_{a} (\frac{x}{y}) & = \log_{a} (a^{p-q}) \\
\\
& = p-q \\
\\
Then \ substituting \ from \ \enclose{circle}{\color{black}{1}} \\
\\
\log_{a} (\frac{x}{y}) & = \log_{a} x - \log_{a} y \quad as \ required
\end{align}