Domain \(\{x\geq-2\}\), Range\(\{f(x)\geq0\}\)
Therefore
Domain \(\{x\geq0\}\), Range\(\{f(x)\geq-2\}\)
This is true when \(f(x)=x\)
\begin{align*} \sqrt{x+2} & = x\\ x+2 & = x^2\\ 0 & = x^2-x-2\\ 0 & =(x-2)(x+1)\\ So\\ x & = 2,\; x=-1\\ But\;x & =-1\;is\;impossible\;\\ So\;x & =2 \end{align*}