Show that \(arcosh (x) = \ln \left(x+\sqrt{(x^2-1)}\right)\,, \quad x\geqslant 1 \)
\begin{align}
\end{align}
\begin{align}
Let\ y & = arcosh(x) \\
x & = cosh(y)\\
x & = \frac{e^y +e^{-y}}{2} \\
2x & = e^y + e^{-y}\\
2xe^y & = e^{2y} + e^{0}\\
2xe^y & = e^{2y}+ 1\\
0 & = e^{2y}-2xe^y+1 & \\
0 & = (e^y-x)^2 -x^2 + 1 \\
e^y & = x \pm \sqrt{(x^2-1)}\\
\implies y & = \ln \left(x \pm \sqrt{(x^2-1)}\right) \\
But\ for\ x \gt 1\,, \quad & \ln \left(x- \sqrt{(x^2-1)} \right)\ \lt 1,\ and\ arcosh \lt 0.\\
However,\ by\ definition,\ & arcosh(x)\ must\ be\ positive.\ Therefore \\
arcosh (x) & = \ln \left(x+\sqrt{(x^2-1)} \right)
\end{align}