Show that \(arsinh (x) = \ln (x+\sqrt{(x^2+1)}) \)
\begin{align}
\end{align}
\begin{align}
Let\ y & = arsinh(x) \\
x & = sinh(y)\\
x & = \frac{e^y -e^{-y}}{2} \\
2x & = e^y - e^{-y}\\
2xe^y & = e^{2y} -e^{0}\\
2xe^y & = e^{2y}-1\\
0 & = e^{2y}-2xe^y-1 & \\
0 & = (e^y-x)^2 -x^2 -1 \\
e^y & = x \pm \sqrt{(x^2+1)}\\
But \quad \sqrt {(x^2+1)} \gt x \\
So\ the\ only\ valid\ solution\ is \\
e^y & = x + \sqrt{(x^2+1)}\\
\implies y & = \ln \left(x+\sqrt{(x^2+1)}\right) \\
arsinh (x) & = \ln \left(x+\sqrt{(x^2+1)} \right)
\end{align}