Show that \(artanh (x) = \frac{1}{2}\ln \left( \frac{1+x}{1-x} \right)\,, \quad |x| \lt 1 \)
\begin{align}
\end{align}
\begin{align}
Let\ y & = artanh(x) \\
x & = tanh(y)\\
\\
x & = \frac{e^y -e^{-y}}{e^y+e^{-y}} \\
\\
x & = \frac{e^{2y} -e^{0}}{e^{2y}+e^{0}}\\
\\ e^{2y}-1 & = xe^{2y}+x \\
0 & = e^{2y}-xe^{2y} -x -1 \\
0 & = e^{2y}(1-x) - (1+x) \\
e^{2y} & = \frac{1+x}{1-x} \\
2y & = \ln\left(\frac{1+x}{1-x} \right) \\
y & = \frac{1}{2} \ln\left(\frac{1+x}{1-x} \right) \\
\implies artanh (x) & = \frac{1}{2} \ln\left(\frac{1+x}{1-x} \right)\ , \quad |x| \lt 1
\end{align}