Find \( \frac{d}{dx}sinh^{-1}(x) \)
\begin{align}
\end{align}
\begin{align}
Let\quad y & = sinh^{-1}(x) \\
Then\quad x & = sinh(y) \\
And\quad \frac {dx}{dy}& = cosh(y) \\
& = +\sqrt{sinh^2(y) + 1 } \quad(+ve\ only,\ because\ cosh(y)\gt 0)\\
& = \sqrt{ (x^2 + 1)} \\
\therefore \quad \frac{dy}{dx} & = \frac{1}{\sqrt{x^2+1}}
\end{align}
Find \( \frac{d}{dx}cosh^{-1}(x) \)
\begin{align}
\end{align}
\begin{align}
Let\quad y & = cosh^{-1}(x) \\
Then\quad x & = cosh(y) \\
And\quad \frac {dx}{dy}& = sinh(y) \\
& = +\sqrt{cosh^2(y) - 1 } \quad(+ve\ only,\ because\ sinh(y)\gt 0\ for\ these\ values\ of\ y.)\\
& = \sqrt{ x^2 - 1} \\
\therefore \quad \frac{dy}{dx} & = \frac{1}{\sqrt{x^2-1}}
\end{align}
Find \( \frac{d}{dx}tanh^{-1}(x) \)
\begin{align}
\end{align}
\begin{align}
Let\quad y & = tanh^{-1}(x) \\
Then\quad x & = tanh(y) \\
And\quad \frac {dx}{dy}& = sech^2(y) \\
& = 1- tanh^2(y)\\
& = 1-x^2 \\
\therefore \quad \frac{dy}{dx} & = \frac{1}{1-x^2} \\
\end{align}