Find \( \int sinx \sqrt{4cosx+2}\ dx \) using the substitution   \(u=cosx\)
\begin{align}
Let \quad I & = \int sinx \sqrt{4cosx+2}\ dx \\
\\
And \quad let \quad u & = cosx \\
\\
then \quad \frac{du}{dx} & =-sinx \\
dx & = -\frac{1}{sinx}\ du \\
\\
So \quad I & = \int \ sinx\ \sqrt{4u+2} \ \left(-\frac{1}{sinx} \right) du \\
\\
& = -\int \ (4u+2)^{\frac{1}{2}}\ du \\
\\
& = - \frac{1}{6}(4u+2)^{\frac{3}{2}}+c \\
\\
& = - \frac{1}{6}(4cosx+2)^{\frac{3}{2}} +c
\end{align}