Find \( \int\ cos^2x\ dx \)
\begin{align}
Let \quad I & = \int\ cos^2x\ dx \\
\\
We\ know\ that \quad cos2x & = 2cos^2x-1 \\
\implies cos^2x & = \frac{1}{2}(cos2x+1) \\
\\
Substituting,\ gives \\
\\
I & = \int \frac{1}{2}(cos2x+1)\ dx \\
\\
& = \int\ \frac{1}{2}cos2x\ dx + \int\ \frac{1}{2}\ dx \\
\\
& = \frac{1}{4}sin2x+ \frac{1}{2}x + c\\
\\
\end{align}