Evaluate \( \int_{0}^{1}\ 5x(4x^2+1)^3 \)
\begin{align}
\int_{0}^{1} 5x(4x^2+1)^3 & = \left[ \frac{5}{32}(4x^2+1)^4 \right]_{0}^{1} \\
\\
& = \left(\frac{5}{32}(4(1^2)+1)^4 \right)- \left(\frac{5}{32}(4(0^2)+1)^4 \right) \\
\\
& = \frac{3125}{32}- \frac{5}{32} \\
\\
& = \frac{3120}{32} \\
\\
& = 97 \frac{1}{2}
\end{align}