Find the inverse of the matrix
\[ A= \begin{pmatrix}
1 & 1 & -3 \\
-2 & 4 & 2 \\
4 & 0 & -1 \\
\end{pmatrix} \]
\begin{align}
& We\ know\ that \\
A^{-1} & = \frac{1}{|A|}\ adj\ A \quad \quad \enclose{circle}{\color{black}{1}} \\
\\
\\
& So\ first\ find\ the\ determinant\ |A| \\
\\
|A| & = 4[1(2)-(4)(-3)]-0[1(2)-(-2)(-3)]-1[1(4)-(-2(1)] \\
& = 56-0-6 \\
& = 50
\\
\\
& Then\ find\ A^T \quad (i.e.\ transpose\ A) \\
\\
A^T & = \begin{pmatrix}
1 & -2 & 4 \\
1 & 4 & 0\\
-3 & 2 & -1 \\
\end{pmatrix}
\\
\\
& And\ finally,\ replace\ the\ elements\ of\ the\ transpose\ matrix\ \\
& with\ their\ cofactors\ to\ produce\ adj\ A \quad(i.e.\ adjugate\ A) \\
\\
adj\ A & =\begin{pmatrix}
\begin{vmatrix}
4 & 0 \\
2 & -1
\end{vmatrix} & -\begin{vmatrix}
1 & 0 \\
-3 & -1
\end{vmatrix} & \begin{vmatrix}
1 & 4 \\
-3 & 2
\end{vmatrix} \\
-\begin{vmatrix}
-2 & 4 \\
2 & -1
\end{vmatrix} & \begin{vmatrix}
1 & 4 \\
-3 & -1
\end{vmatrix} & - \begin{vmatrix}
1 & 2 \\
-3 & 2
\end{vmatrix} \\
\begin{vmatrix}
-2 & 4 \\
4 & 0
\end{vmatrix} & -\begin{vmatrix}
1 & 4 \\
1 & 0
\end{vmatrix} & \begin{vmatrix}
1 & -2 \\
1 & 4
\end{vmatrix} \\
\end{pmatrix}
\\
\\
adj\ A & =\begin{pmatrix}
-4 & 1 & 14 \\
6 & 11 & 4 \\
-16 & 4 & 6 \\
\end{pmatrix}
\\
\\
\\
& Substituting\ our\ results\ into \quad \enclose{circle}{\color{black}{1}} \quad gives\ A^{-1} \ (i.e.\ inverse\ A)\\
\\
A^{-1} & = \frac{1}{50} \begin{pmatrix}
-4 & 1 & 14 \\
6 & 11 & 4 \\
-16 & 4 & 6 \\
\end{pmatrix}
\\
\\
\\
& To\ check\ our\ answer \\
\\
A^{-1}A & = \frac{1}{50} \begin{pmatrix}
-4 & 1 & 14 \\
6 & 11 & 4 \\
-16 & 4 & 6 \\
\end{pmatrix}
\begin{pmatrix}
1 & 1 & -3 \\
-2 & 4 & 2 \\
4 & 0 & -1 \\
\end{pmatrix}
\\
\\
& =
\frac{1}{50}
\begin{pmatrix}
50 & 0 & 0 \\
0 & 50 & 0 \\
0 & 0 & 50 \\
\end{pmatrix}
\\
\\
& =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}= I \quad as\ required
\end{align}