Converting Polar Coordinates
Given the point P has Cartesian coordinates \( (x,y) \) and polar coordinates \( (r, \theta) \)
\begin{align}
x & = r\,cos \theta \quad \quad \quad \quad \frac{y}{x} = tan\, \theta\\
\\
y & = r\,sin\theta \quad \quad \quad \quad r^2 = x^2 + y^2 \\
\end{align}
Example - (Polar to Cartesian)
Convert this polar equation of a circle into a Cartesian equation
\(r = 2a \,cos \theta \)
\begin{align}
r & =2a \,cos \theta \ \\
\\
r & = 2a \left( \frac{x}{r} \right)\\
\\
r^2 & = 2ax \\
\\
2ax & = x^2 + y^2 \\
\\
0 & = x^2 + y^2 - 2ax
\end{align}
Example - (Cartesian to Polar)
Convert this Cartesian equation of a parabola into a polar equation
\(y= 2x^2 \)
\begin{align}
y & =2x^2 \\
\\
rsin \theta & = 2(rcos \theta) ^2\\
\\
rsin \theta & = 2r^2cos^2 \theta \\
\\
\frac {1}{r} & = \frac {2 cos^2 \theta}{sin \theta} \\
\\
r & = \frac{sin \theta}{2cos^2 \theta} \\
\\
r & = \frac{1}{2} \,tan \theta \, sec \theta
\end{align}