Trigonometric Formulae
Addition Formulae
\begin{align}
cos(A+B) & = cosAcosB-sinAsinB \\
\\
cos(A-B) & = cosAcosB +sinAsinB \\
\\
sin(A+B) & = sinAcosB +sinBcosA \\
\\
sin(A-B) & = sinAcosB-sinBcosA \\
\\
tan(A+B) & = \frac{tanA+tanB}{1-tanAtanB} \\
\\
tan(A-B) & = \frac{tanA -tanB}{1+tanAtanB} \\
\end{align}
Half-angle Formulae
\begin{align}
tan(\theta) & = \frac{tan \frac{\theta}{2}+tan \frac{\theta}{2}}{1-tan \frac{\theta}{2} tan \frac{\theta}{2}} \\
\\
sin(\theta) & =\frac{tan \frac{\theta}{2}+tan \frac{\theta}{2}}{1+tan \frac{\theta}{2} tan \frac{\theta}{2}} \\
\\
cos(\theta) & = \frac {1-tan \frac{\theta}{2} tan \frac{\theta}{2}} {1+tan \frac{\theta}{2} tan \frac{\theta}{2}}
\\
\end{align}
Sum Formulae
\begin{align}
sin(x) + sin(y) = 2 sin\ \left(\frac{x + y}{2} \right) \cos\ \left(\frac{x - y}{2} \right) \\
\\
sin(x) - sin(y) = 2 cos\ \left(\frac{x + y}{2} \right) sin\ \left(\frac{x - y}{2} \right) \\
\\
cos(x) + cos(y) = 2 cos\ \left(\frac{x + y}{2}\ \right) cos \left(\frac{x - y}{2} \right) \\
\\
cos(x) - cos(y) = -2 sin\ \left(\frac{x + y}{2}\ \right)\ sin \left(\frac{x - y}{2}\ \right)
\end{align}
Product Formulae
\begin{align}
sin(x)\ cos(y) = \frac{1}{2} \left[sin(x + y) + sin(x - y) \right] \\
\\
cos(x)\ sin(y) = \frac{1}{2} \left[sin(x + y) - sin(x - y) \right] \\
\\
cos(x)\ cos(y) = \frac{1}{2} \left[cos(x - y) + cos(x + y) \right] \\
\\
sin(x)\ sin(y) = \frac{1}{2} \left[cos(x - y) - cos(x + y) \right] \\
\end{align}