Solve
\( 2tan^2x-secx-6=0\ \) in the interval \( \quad - \pi \leqslant x \leqslant \pi\)
\begin{align}
0 & = 2tan^2x-secx-4 \\
0 & = 2(sec^2-1)-secx-4 \\
0 & = 2sec^2x -2 -secx-4\\
0 & = 2sec^2x-secx-6 \\
0 & = 2sec^2x - 4secx + 3secx-6 \\
0 & =2secx(secx-2)+3(secx-2) \\
0 & = (2secx+3)(secx-2)\\
\\
\implies secx & = -\frac{3}{2} \quad and \quad secx=2 \\
So \quad \frac{1}{cosx} & = -\frac{3}{2} \\
\implies\ cosx & = -\frac{2}{3}\\
And \quad \frac{1}{cosx} & = 2 \\
\implies\ cosx & = \frac{1}{2}
\\
\\
\therefore\ \quad x & = 2.3^c\ and\ -2.3^c\,, \quad and \quad x= \frac{\pi}{3}\ and\ -\frac{\pi}{3} \\
\\
\end{align}