Solve \( 2sin^2x-5sinx-3=0 \) in the interval \( \quad -90^{\circ} \leqslant x \leqslant 270^{\circ}\)
\begin{align}
0 & = 2sin^2x-5sinx-3 \\
0 & = 2sin^2x-6sinx+sinx-3 \\
0 & = 2sinx(sinx-3)+(sinx-3) \\
0 & = (2sinx+1)(sinx-3) \\
\implies sinx= & -\frac{1}{2} \\
or \quad sinx & =3\ (impossible,\ so\ reject\ this\ solution) \\
\\
\therefore\ \quad x & = -30^{\circ},\ and \quad x= 210^{\circ} \\
\\
\end{align}