Trigonometric Identities


\( \)

\( cos^2x+sin^2x=1 \)

\( tan^2x + 1 = sec^2x\)

\(cot^2x+1 = cosec^2x \)

\(tanx = \frac{sinx}{cosx} \)

\(cotx=\frac{cosx}{sinx} \)

\(secx= \frac{1}{cosx} \)

\(cosecx=\frac{1}{sinx} \)

\( \)


Hyperbolic Identities

Osborn's Rule: The hyperbolic identities are directly analogous to the trigonometric identities, with a change of sign when we have a \(sin^2x\) term either explicitly or implicitly (e.g. as with \(tan^2x \) )

\( cosh^2x - sinh^2x =1 \)

\( -tanh^2x + 1 = sech^2x\)

\(-coth^2x+1 = -cosech^2x \)

\(tanhx = \frac{sinhx}{coshx} \)

\(cothx=\frac{coshx}{sinhx} \)

\(sechx= \frac{1}{coshx} \)

\(cosechx=\frac{1}{sinhx} \)

\( \)

\( \)

\( \)